3-D Metrology and Correction of Aspheric Diffractive Optics

ASPE Annual Meeting Denver November 17, 2011

Erik Stover Taylor Hobson Dr. Jeffrey Roblee Precitech

Demand for Large Diffractive Surfaces

Global Excellence in Metrology

Nanoform[®] 250 Ultra 2-axes up to 4-axes X, Z, C, B

Control Design Features

QNX real time operating system

- Allow real time process monitoring during part cutting
- Industry leading 0.01 nm programming resolution
- Linear holographic glass scales
 - Industry leading 16 picometer feedback resolution
 - · Mounted at the center line of the scale to reduce thermal errors
- · Linear motors coupled to true analog linear amplifiers
- On-machine work piece balancing system
 Machine Design Features
- Sealed natural granite base providing exceptionally long term machine tool stability
- FEA optimized dual sub-frames for the ultimate in environmental isolation
- Hydrostatic oil bearing slideways with optimized stiffness and dampening characteristics
- · Liquid cooled slides and spindles for thermal stability
- Two standard spindle options to optimize performance for your application

Nanoform[®] 250 ultra Specifications

Slide Travel X & Z	220 mm	Load Capacity	SP-150 85 kg HS-75 27 kg
Max Feedrate	4000 mm/min	Spindle Speed	SP-150 7,000 rpm HS-75 18,000 rpm
Swing Capacity	250 mm	Position Accuracy C-axis	+/- 2 arc-sec
	222 mm optional B-axis	Rotary B-axis	+/- 1 arc-sec
X&Z Straightness	0.2 μm full travel	Max Speed C-axis	3000 rpm
	0.05 μm/ 25 mm	Rotary B-axis	50 rpm intermittent

3D Error Compensation using a Fast Tool Servo

The Fast Tool Servo systems enables the diamond turning of surface structures such as micro prisms, lens arrays, torics and offaxis aspheres with departures up to 1000 microns

	FTS 1000	FTS500	FTS70
Travel	1000µm ≈119hz 250µm ≈238hz	500µm ≈168hz 250µm ≈238hz 625µm ≈470hz	$70 \mu m \approx 100 hz$
Maximum Acceleration	278m/sec ²	278m/sec ²	300m/sec ²
Typical Form	<0.6 µm PV	<0.3 µm PV	<0.3µm PV
Typical Finish	<9 nm Ra	<5 nm Ra	<3 nm Ra

Global Excellence in Metrology

Versatile metrology for a large range of optical components

Roundness & Runout

Highly Aspheric Gullwings

Large Diameter Asphero-Diffractive

Designed specifically for Optics Manufacturers

Global Excellence in Metrology

METEK

Introducing the PGI Dimension range

- The PGI Dimension is the latest in dynamic, flexible, aspheric metrology
- A modular, high accuracy measurement platform
 - adaptable to differing budgets and technical needs
 - Add technology as markets and requirements evolve
- Based on two of Taylor Hobson's core technologies
 - Aspheric profilometry and high accuracy roundness

Global Excellence in Metrology

AMETEK

3D Measurement Capabilities

- Accurate measurement of a large range of diameters, sag's and shapes
- Fast measurement, rapid set up
 - Designed to fit within manufacturing cycle times
- Fully automated operation and simplified user interface
 - Easy to use, reduces operator dependency
- 3D measurement and analysis
 - 3D data feedback for manufacturing process control
- Unique data analysis tools
 - Including Diffractive Zone Analysis
 - Reverse engineering functions

Global Excellence in Metrology

TAYLOR HOBSON®

Key Specifications

- Measure and analyze a wide range of shapes, sags, slopes and frequencies
 - Slope angles up to 85 deg!
 - Up to 300 mm diameter
 - Sags of up to 50 mm
 - Spatial frequencies from 125nm to 10's of mm's
 - Form repeatability typically <50nm, better than $\lambda/10$
 - Extremely low total system noise <3nm RMS
 - Including Gauge noise <1nm RMS
 - Fully automatic alignment of aspheric axis to spindle axis
 - <0.3um of de-centre
 - <0.008 Deg of tilt
 - Fast measurement speed with minimal loss of accuracy
- Advanced analysis tools enable comprehensive parameter reports
 - All form, finish and waviness spectra
 - ISO compliant output

Global Excellence in Metrology

AMETEK ULTRA PRECISION TECHNOLOGIES

Taylor Hobson Document name : Part 3 Cave Side 1_0001.m Measured Data over Full Apenure 2-180 Deg 10 272 De Form Error over Clear Ademure - Comparison Residual Form Error - Upper envelope minus lower enve Form Error over Clear Aperture - Mean TAYLOR HOBSON®

PGI Dimension improves Image Quality

- PGI Dimension can improve the performance of your imaging system
 - Reduces form error, waviness and roughness
 - Low Spatial Frequency (Form Error):
 - Poor focus quality (inadequate correction of spherical aberration)
 - Focal length and position error
 - Field of View and Magnification error
 - Distortion
 - Reduction in MTF (Resolution)
 - Mid Spatial Frequency (Waviness):
 - Directed (narrow angle) scatter
 - Intensity distribution errors
 - Reduction in MTF (Resolution)
 - Halo and ghost effects
 - High Spatial Frequency (Roughness):
 - Diffuse (wide angle) scatter
 - Reduced transmission
 - Background noise

PGI Dimension enables high quality Diffractives

- Reduces Zone Height Errors
 - Transmission losses
- Reduces Zone Spacing Errors
 - Blurred Focus
 - Band-pass shift
 - Chromatic Aberration
- Improves Zone Sharpness (Shadowing)
 - Transmission losses

- 50mm Diameter
- 60mm radius
- K= -1
- .057mm Departure from BFS
- 22.62 Deg of slope

Global Excellence in Metrology

Global Excellence in Metrology

Second test case: Axismmetric Diffractive

- 60mm convex radius
- K= -1
- Diffractive
 coefficient -4e-5
- 3um Step Size
- Programmed using DIFFSYS

Global Excellence in Metrology

2D Diffractive Measurement

- Single PGI trace
- 1micron sine wave super imposed on the base asphere
- Residual error from base asphere

Global Excellence in Metrology

Diffractive Residual Form Error Australics Analysis Utility - Severinerge 1815 2 C Residual error • of Fig. Edt. Window Apparts 1940 1 1 3 3 from base asphere 10 住住口具有关系并非中心出现过 and diffractive of 1 Flam Fredle | Fore Error | Apphene Diffective Error | Apphene Diffective Zones precomp_diff_1_t2 - Apphano-Diffractives/Disordard Analysis 11/10/2011 10/29:53 AM Modified Profile 11/10/2011 1:00 18 AM precomp_itif_1_02-40.975mm micron 14 13 1.4 144 Tool showed • 12roughly a 200nm 11 zone in center 44. 4.0 41. 44 03484 1.0918 TAPH FIAS Max Half Dia Ein 14,3418 art Max Half Dia EH ZonelD Max Zone HEEH -9.3955 nm Max Zone Ht Err ZonelO Ave Zone H 2.9987 1.00 e/ practicity_still_1_12

Global Excellence in Metrology

i. Ifiir

Autors Officiative Analysis

Antonia Settings (Delantive)

2 Scale Drotation mutaticale

One Aperture Settings

8-Cear Agenura

Mape Prov Setting

Dogis Brist Band

49.200mm

1.0003heat

Daniel.

Settings He

14

Z Auto Scaling

10 01

Diffractive Post Compensation with Asphere Removed

Pt = 3.043 microns. Nominal step height is 3 micron.

Diffractive Post Compensation Residual Error

8x improvement in form error without any filtering

DIffractive Pre-compensation versus Post Compensation

Third test case: Sphere with Astigmatism

- 20 mm diameter convex brass sphere w/ 15mm radius
- Max slope of 42 Deg
- Cut with Fast Tool Servo at 3000 RPM
- Pt= 2.368 microns
- Measured with an interferometer
- Lateral calibration assumed fringes continued to the diameter
- Camera resolution of 320 X 240

Global Excellence in Metrology

METEK

PGI 3D Measurement of Sphere (Radial and Sag)

Fourth test case: Asphere with Astigmatism

ULTRA PRECISION TECHNOLOGIES

PGI 3D measurement ٠ **3D** Astigmatism -20 -15 -10 -5 0 5 10 15 20 mm μm **Asphere Pre-**- 3 -22.5 compensation -20 ISO 25178 - 2.75 -17.5 Case 1 asphere with 3 Height Parameters ٠ -15 - 2.5 3.066000 Sz μm microns of astigmatism -12.5 Sq 0.629611 μm -2.25 -10 -Astigmatism was cut with • -7.5 -2 Fast-tool servo using -5 - 1.75 -2.5 **DIFFSYS and FastCom** 0. -1.5 software. 2.5 - 1.25 5 -**Traces taken every 45** 7.5 10 Deg File View Toolpath Options Help - 0.75 12.5 15 - 0.5 17.5 - 0.25 20 22.5 - 0 Z scale 1 NM mm 2D Asphere Profile (mm Dia = 50.0000mm Edge sag -5.2083333 D/2 = 25.0000mm Max sag R = -60 @ D/2 at center C = -0.016666667 Min sag at edge K = -1 @ D/2 at edge 5 2083333 Sag range -62.604 Best ft rad Max +ve dev. Max ve dev. -0.056514 TAYLOR HOBSON® **Global Excellence in Metrology**

Asphere Correction Results

3D Astigmatism				
ISO 2	5178			
Height	Parameters			
Sz	245.999999	nm		
Sq	41.411050	nm		

- PGI 3D error map was feed ٠ back into FastCom software to create correction program
- 12x improvement in Form-• error on the first attempt!!!

Global Excellence in Metrology

IETEK ULTRA PRECISION TECHNOLOGIES

~

